INTRODUCTION
Stan Terg deposit is one of many others deposits and mineralization occurrences among the Trepça Mineral Belt of Pb + Zn + Ag mineralization. It is part of the 40 to 60 km width Vardar Zone, which is a tectonic district strongly marked by NW-SE trending lineaments (Fig.1). It expands from Bosnia, through Kosovo, Macedonia to the Gulf of Salonica in Greece. This unit is a kind of fundamental suture located between the Dinaride Alpine Belt (Mesozoic rocks folded during Alpine orogeny) and the Serbo-Kosovaro-Macedonian Massif, which is underlain by late Proterozoic metamorphic successions [5]. In general, the location can be described as western branch of the Alpine-Balkan-Carpathian-Dinaride belt (ABCD belt) and the External Vardar Subzone [2]. The simplified geotectonic map with Vardar Zone is shown in Fig.2. The Vardar Zone consists of crystalline schists (sericites) and Jurassic carbonate platform. They are overlying with a Cretaceous ophiolitic rocks such as serpentinitised ultrabasic rocks, gabbros and diabases [2,8,5]. From the Oligocene up to Miocene plutonic, sub-volcanic and volcanic processes took place. They formed mainly granodioritic batholiths in the deeper parts, andesites and dacites dykes in subsurface areas and large areas of flows, pyroclastic rocks on the surface [5]. Volcanic activities, the result of melting of continental crust, are interpreted as collision type [2]. The youngest shallow water sediments are filling only the Kosovo Basin in the central and southern boundary parts of the Trepça Mineral Belt [5]. Most of the overthrusts structures in Vardar Zone are with SE vergence and are dated as post-Oligo-Miocene or older. Probably many of them are reactivated Variscian structures from the Serbo-Kosovaro-Macedonian Massif margin [5].

MINERALOGICAL DEPOSIT STAN TERG
In the mineral deposit, more than 60 minerals have been determined so far [7, 6]. The formation of minerals associations in deposit is closely related to chemical–physical character of the environment where the mineral are deposited. The main mineral deposits in Trepça includes: sphalerite, galena, pyrites, and pyrrhotite (Fig.3). The amount of ore in the minerals is: pyrites 24%, pyrrhotite 35%, galena 9% and sphalerite 7% silicate compounds, carbonates Fe-Mn 20% and other compound 5% [9]. The mineral association and physic-chemical conditions have classify four stages of mineralization in mineral deposit. Mineralogical deposits of Pb-Zn content these minerals: FeS₂, ZnS, PbS, FeAsS₃, FeS₂ (marcasite), Fe₁₋₄ S, CuFeS₂, 2PbS Cu₂S Sb₂S₃, 5PbS 2Sb₂S₃, 4PbS FeS 3 Sb₂S₃, CuAsS₃₋₄, CuFe₂S₃, 4(Fe, Cu) S 3(Mg, Al) (OH)₂, Cu₃FeSnS₄, Cu₃FeS₄, Cu₂S, and CuS. Accessory mineral are: cerusite, anglesite, malachite, melanterite, gypsum, limonite, and waste mineral quartz, calcite, ankerite, and...
Fig. 1 Vardar zone and position of Pb-Zn-Ag mineralization

Fig. 2 Geotectonic map of central Balkans [5]

Fig. 3 Vertical section of mineralogical deposit Stan Terg [7]

Fig. 4 General Plan of ore zones

Fig. 5 Section through main mineralized zone in Stan Terg [5]

Fig. 6
ZONEs Of MINERALIZATIONS AND Ore Bodies
In the mineral deposit Stan Terg distinguished 10 zones of mineralization that are presented (table.1), with certain labels according to the general plan of the mineralized zones (0-9f), in the form of a horseshoe (Fig.4). In details (table.1), is presented for each contact zones and mineralogy of the ore bodies. In the footwall contacts have limestone and the hanging wall shale (Fig.5). In all zones dominated by ore formation pyrite-pyrrohotite and oligonite.

Materials And Methods Of The Work
In this paper we have taken as samples for research in the Stan Terg mineral deposit. The amount of samples taken is a total of 474 for four levels of study (from the level up to (I-XI). Tests are analyzed in two laboratories for verified their results with experimental laboratory mine. Investigations were made mainly for the Fe and Mn (their distribution in these active inactive levels of production). Results based on the distribution of elements Fe and Mn are given according to the levels in the source of Stan Terg.

RESULTS And DISCUSSIONS
Research results of Fe and Mn, are presented by level (Fig.6, 7, 8 and 9). In Fig.10 we present the ratio between Fe / Mn that best reflects metasomatic ore bodies in contact with limestone and marbles. The content of Fe from level 255m to 15m of growth shows an average distribution of 25.36% to 35.9%. The content of sulfur increases with increasing depth from the 255m to 15m (from 8% to 35%). The ratio of Fe / Mn level of VII horizon to horizon level IX is uniform. From IX horizon level down to level horizon XI has a report noted that growth is expected in the levels below. Mineral zones indicate that we are dealing with pyrite ore bodies and pyrrohotite.

The content of Fe in concentrations of Pb (12-16.2%), and Fe in the concentrate of Zn (4-8.1%) calculated during the annual exam in the concentrator [3]. In 2011 in the concentrator is estimated that the Fe component in Pb concentrate has increased (5-21%), and Fe in the concentrate of Zn has a very high percentage (15-18.2%) than in the previous year [4].

CONCLUSION
Based on the results of geological exploration from the upper levels to XI horizon level (15m), it can be seen that we have increased the percentage of Components of Fe and Mn. This increase is consistent with the geological model...
on the formation of metasomatic deposits (skarn) in shale-limestone contact. Such an increase of Fe and Mn meets in the enrichment process results in concentrations of Pb and Zn presented above.

This increase in the presence of Fe and Mn in the concentration of Pb and Zn affects the quality of the production and smelting process in metallurgy. Proposed that in consistency to convey Fe and Mn because the results so far have high percentage content in the concentrations of Pb and Zn and high costs.

REFERENCE

Source of support: Nil; Conflict of interest: None declared